Apprentissage non-supervisé de la morphologie des langues à l'aide de modèles bayésiens non-paramétriques

Thèse de Kévin LÖSER, sous la direction d'Alexandre Allauzen (TLP). Soutenance le mardi 9 juillet 2019 à 14:00

- M. Benoît Crabbé, Maître de Conférences, Université Paris Diderot (UFRL)
- M. Christophe Cerisara, Chargé de Recherche, Université Henri-Poincaré (LORIA)
- M. Pierre Zweigenbaum, Directeur de Recherche, CNRS (LIMSI)
- M. Alexandre Allauzen, Professeur, Université Paris Sud (LIMSI)

Un problème central contribuant à la grande difficulté du traitement du langage naturel par des méthodes statistiques est celui de la parcimonie des données, à savoir le fait que dans un corpus d'apprentissage donné, la plupart des évènements linguistiques n'ont qu'un nombre d'occurrences assez faible, et que par ailleurs un nombre infini d'évènements permis par une langue n'apparaitront nulle part dans le corpus. Les modèles neuronaux ont déjà contribué à partiellement résoudre le problème de la parcimonie en inférant des représentations continues de mots. Ces représentations continues permettent de structurer le lexique en induisant une notion de similarité sémantique ou syntaxique entre les mots. Toutefois, les modèles neuronaux actuellement les plus répandus n'offrent qu'une solution partielle au problème de la parcimonie, notamment par le fait que ceux-ci nécessitent une représentation distribuée pour chaque mot du vocabulaire, mais sont incapables d'attribuer une représentation à des mots hors vocabulaire. Ce problème est particulièrement marqué dans des langues morphologiquement riches, ou des processus de formation de mots complexes mènent à une prolifération des formes de mots possibles, et à un faible coincidence entre le lexique observé lors de l’entrainement d’un modèle, et le lexique observé lors de son déploiement. Aujourd'hui, l'anglais n'est plus la langue majoritairement utilisée sur le Web, et concevoir des systèmes de traduction automatique pouvant appréhender des langues dont la morphologie est très éloignée des langues ouest-européennes est un enjeu important. L’objectif de cette thèse est de développer de nouveaux modèles capables d’inférer de manière non-supervisée les processus de formation de mots sous-jacents au lexique observé, afin de pouvoir de pouvoir produire des analyses morphologiques de nouvelles formes de mots non observées lors de l’entraînement.

LIMSI
Campus universitaire bât 507
Rue du Belvedère
F - 91405 Orsay cedex
Tél +33 (0) 1 69 15 80 15
Email

RAPPORTS SCIENTIFIQUES

Rapport scientifique

 

Le LIMSI en chiffres

8 équipes de recherche
100 chercheurs et enseignants-chercheurs
40 ingénieurs et techniciens
60 doctorants
70 stagiaires

 Université Paris-Sud nouvelle fenêtre

 

Paris-Saclay nouvelle fenêtre


© 2017 LIMSI CNRS