Actualités

Apprentissage incrémental de modèles de domaines par interaction dialogique

Thèse de Vincent Létard, équipe TLP, vendredi 28 avril à 15h au Limsi.

L'intelligence artificielle est la discipline de recherche d'imitation ou de remplacement de fonctions cognitives humaines. À ce titre, l'une de ses branches s'inscrit dans l'automatisation progressive du processus de programmation. Il s'agit alors de transférer de l'intelligence ou, à défaut de définition, de transférer de la charge cognitive depuis l'humain vers le système, qu'il soit autonome ou guidé par l'utilisateur. Dans le cadre de cette thèse, nous considérons les conditions de l'évolution depuis un système guidé par son utilisateur vers un système autonome, en nous appuyant sur une autre branche de l'intelligence artificielle : l'apprentissage artificiel. Notre cadre applicatif est celui de la conception d'un assistant opérationnel incrémental, c'est-à-dire d'un système capable de réagir à des requêtes formulées par l'utilisateur en adoptant les actions appropriées, et capable d'apprendre à le faire. Pour nos travaux, les requêtes sont exprimées en français, et les actions sont désignées par les commandes correspondantes dans un langage de programmation. L'apprentissage du système est effectué à l'aide d'un ensemble d'exemples constitué par les utilisateurs eux-mêmes lors de leurs interactions. Nous avons collecté plusieurs ensembles d'exemples pour l'évaluation des méthodes d'apprentissage, en analysant et réduisant progressivement les biais induits. Le protocole que nous proposons est fondé sur l'amorçage incrémental des connaissances du système à partir d'un ensemble vide ou très restreint. Nous utilisons donc une méthode de raisonnement à partir de cas : le raisonnement par analogie formelle. Nous montrons que cette méthode permet une précision très élevée dans les réponses du système, mais également une couverture relativement faible. L'extension de la base d'exemples par analogie est explorée afin d'augmenter la couverture des réponses données. Dans une autre perspective, nous explorons également la piste de rendre l'analogie plus tolérante au bruit et aux faibles différences en entrée en autorisant les approximations, ce qui a également pour effet la production de réponses incorrectes plus nombreuses. La durée d'exécution de l'approche par analogie, déjà de l'ordre de la seconde, souffre beaucoup de l'extension de la base et de l'approximation. Nous avons exploré plusieurs méthodes de segmentation des séquences en entrée afin de réduire cette durée, mais elle reste encore le principal obstacle à contourner pour l'utilisation de l'analogie formelle dans le traitement automatique de la langue. Enfin, l'assistant opérationnel incrémental fondé sur le raisonnement analogique a été testé en condition incrémentale simulée, afin d'étudier la progression de l'apprentissage du système au cours du temps. On en retient que le modèle permet d'atteindre un taux de réponse stable après une dizaine d'exemples vus en moyenne pour chaque type de commande. Bien que la performance effective varie selon le nombre total de commandes considérées, cette propriété ouvre sur des applications intéressantes dans le cadre incrémental du transfert depuis un domaine riche (la langue naturelle) vers un domaine moins riche (le langage de programmation).

Jury

Isabelle Tellier              Professeure à l'Université Paris 3 Sorbonne Nouvelle  Rapporteure
Philippe Langlais          Professeur à l'Université de Montréal                           Rapporteur
Gilles Richard               Professeur à l'Université Paul Sabatier                         Examinateur
Pierre Zweigenbaum   Directeur de Recherche CNRS LIMSI                            Examinateur
Sophie Rosset              Directrice de Recherche CNRS LIMSI                            Directrice de thèse
Gabriel Illouz                Professeur à l'Université Paris Sud                               Co-encadrant

LIMSI
Campus universitaire bât 508
Rue John von Neumann
F - 91405 Orsay cedex
Tél +33 (0) 1 69 15 80 15
Email

RAPPORTS SCIENTIFIQUES

Le LIMSI en chiffres

10 équipes de recherche
100 chercheurs et enseignants-chercheurs
40 ingénieurs et techniciens
60 doctorants
70 stagiaires

 Université Paris-Sud nouvelle fenêtre

 

Paris-Saclay nouvelle fenêtre